
#01OWASP Top 10 Cheatsheet

What is it? Real-world example

How do you prevent it?

How is it exploited?

Broken Access Control occurs when applications
fail to enforce proper user permissions, allowing
unauthorised access to sensitive data, system
functionality, or administrative actions.

In 2014, Snapchat’s API flaw allowed attackers
to scrape 4.6 million usernames, phone numbers,
and locations, simply by bypassing authentication
checks - an example of how simple and powerful
access control exploits can be.

The Secure by Design approach ensures access
control failures are mitigated before attackers can
exploit them by, amongst other things:

Simply put, attackers manipulate application
requests to gain unauthorised access, often using:

Common causes include:

Failure to implement the Principle of Least Privilege
(PoLP): Granting users more permissions than
needed.

Denying access by default: Only allow permissions
that are explicitly granted.

Using server-side enforcement: Never rely on
client-side access controls.

Implementing Role-Based Access Control (RBAC):
Assign permissions based on user roles.

Applying the Principle of Least Privilege (PoLP):
Grant only the minimum access required.

Using secure session management: Invalidate
tokens upon logout, use MFA, implement session
binding, and limit session lifetimes.

Using rate-limiting and API security: Prevent brute-
force attempts on access control mechanisms.

Adopt a Zero Trust model: Authenticate users and
services continuously rather than relying on session
persistence alone.

Conducting security testing: Automate functional
access control tests to detect vulnerabilities early.

Monitoring and logging failures: Track
unauthorised access attempts to alert admins.

URL manipulation: Modifying parameters, for
example changing ‘user_id=123’ to ‘user_id=456’,
allowing them to access another user’s data.

Privilege escalation: Acting as an admin while
logged in as a regular user, perhaps by altering
cookies, JSON Web Tokens (JWT), or request
metadata.

CORS misconfiguration: Exploiting improperly
configured Cross-Origin Resource Sharing (CORS)
to access APIs from untrusted origins.

Force browsing: Manually accessing restricted
pages or admin panels by guessing URLs.

Insecure direct object references (IDOR): Exposing
database keys or file paths in URLs.

Client-side access controls: Allowing attackers to
bypass restrictions by modifying requests.

Unprotected APIs and endpoints: Failing to
validate permissions properly.

perceptive.is

Broken access control

